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About The Class

 Requirements and Grading: 

• Homework & Project + Mid-term Test: 50%

• Final Exam : 50%



About The Class

 Text book and reference:

▫ Signals & Systems  (Second Edition) 

by Alan V. Oppenheim, 电子工业出版社
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Introduction

• Signals

▫ Definitions, representations and classifications

▫ Fundamental signal transformations

▫ Typical signal examples

• Systems

▫ Concepts, representations, and classifications

▫ Basic properties of systems



The Signals and Systems Abstraction

• Describe a system (physical, mathematical, or 
computational) by the way it transforms an input signal 
into an output signal.



Example: Mass and Spring



Example: Tanks



Example: Cell Phone System



Signals and Systems: Widely Applicable
• The Signals and Systems approach has broad application: electrical,

mechanical, optical, acoustic, biological, financial, ...



Check Yourself

• Computer generated music 𝑓(𝑡)

𝑓(𝑡)

1.wav
1.wav


Check Yourself

• Listen to the following three manipulated signals:

𝑓1(𝑡) 𝑓2(𝑡) 𝑓3(𝑡), try to find the correct answer

𝑓1(𝑡)

𝑓2(𝑡)

𝑓3(𝑡)

-𝑓(𝑡)

0.5𝑓(𝑡)

𝑓(2𝑡)

1.wav
1.wav
2.wav
2.wav
3.wav
3.wav


Check Yourself



Check Yourself 



Frequency

Salvador Dali
“Gala Contemplating the Mediterranean Sea, 
which at 30 meters becomes the portrait 
of Abraham Lincoln”, 1976



Frequency Cues



Frequency Cues



• The frequency domain

A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.



Jean Baptiste Joseph Fourier (1768-1830)

• had crazy idea (1807):
• Any periodic function can be 

rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

• Don’t believe it?  
▫ Neither did Lagrange, Laplace, 

Poisson and other big wigs

▫ Not translated into English 
until 1878!

• But it’s true!
▫ called Fourier Series



Frequency Spectra

• example : g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)

= +

Slides: Efros
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Example: Music

• We think of music in terms of frequencies at 
different magnitudes

Slide: Hoiem



Human Hearing and Voice Signals 

• Range is about 20 Hz to 20 kHz, most 

sensitive at 2 - 4 KHz.

• Dynamic range (quietest to loudest) is about 

96 dB

• Normal voice range is about 500 Hz to 2 kHz

– Low frequencies are vowels and bass

– High frequencies are consonants



Image, Video, Stereo Signal



Computer Vision



A variety of Image Signals

 Image from Invisible light
 γ- ray imaging

 X- ray imaging

 Imaging in the ultraviolet band

 Imaging in the infrared band

 Imaging in the microwave band

 Imaging in the radio band

• Energy of one photon



Electromagnetic Spectrum

http://www.yorku.ca/eye/photopik.htm

Human Luminance Sensitivity Function



Why do we see light of these wavelengths?

© Stephen E. Palmer, 2002

…because that’s where the

Sun radiates EM energy

Visible Light



The Physics of Light

Any patch of light can be completely described

physically by its spectrum: the number of photons 

(per time unit) at each wavelength 400 - 700 nm.

400   500    600    700

Wavelength (nm.)

# Photons
(per ms.)

© Stephen E. Palmer, 2002



The Physics of Light
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D.  Normal Daylight

Wavelength (nm.)

B. Gallium Phosphide Crystal
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Some examples of the spectra of light sources

© Stephen E. Palmer, 2002



The Physics of Light

Some examples of the reflectance spectra of surfaces

Wavelength (nm)

%
 P

h
o
to

n
s
 R

e
fl
e
c
te

d

Red
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400          700

Purple

400          700

© Stephen E. Palmer, 2002



© Stephen E. Palmer, 2002
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Three kinds of cones:

Physiology of Color Vision

• Why are M and L cones so close?

• Why are there 3?



Tetrachromatism

Most birds, and many other animals, have 

cones for ultraviolet light.

Some humans, mostly female, seem to have 

slight tetrachromatism.

Bird cone 

responses



Surface orientation and light intensity

1

2

Why is (1) darker than (2)? 

For diffuse reflection, will intensity change when viewing angle 

changes? 



Visual Perception

• Mach Bands



Visual Perception



Visual Perception



Visual Perception

• Cornsweet illusion



Visual Perception

An example of simultaneous contrast



Perception of Intensity

from Ted Adelson



Perception of Intensity

from Ted Adelson



http://ivm.sjtu.edu.cn

Visual Perception



Visual Perception



Visual Perception

• Eye is not a photometer!

• "Every light is a shade, compared to the 
higher lights, till you come to the sun; and 
every shade is a light, compared to the 
deeper shades, till you come to the night."

• — John Ruskin, 1879



Image Formation



Digital camera

A digital camera replaces film with a sensor array
• Each cell in the array is light-sensitive diode that converts photons to 

electrons

• Two common types: Charge Coupled Device (CCD) and CMOS

• http://electronics.howstuffworks.com/digital-camera.htm

Slide by Steve Seitz

http://electronics.howstuffworks.com/digital-camera.htm


Sensor Array

CMOS sensor



Sensing and Acquisition 



Sensing and Acquisition 

• Image Formation

f(x,y) = reflectance(x,y) * illumination(x,y)

Reflectance in [0,1], illumination in [0,inf]



Sampling and Quantization



Sampling and Quantization
Remember that a digital image is always only an 
approximation of a real world scene



Sampling and Quantization



Sampling and Quantization



Spatial Resolution



Spatial Resolution



The raster image (pixel matrix)



The raster image (pixel matrix)
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Color Images: Bayer Grid

Estimate RGB

at ‘G’ cells from 

neighboring 

values

http://www.cooldictionary.com/

words/Bayer-filter.wikipedia
Slide by Steve Seitz



Color Image
R

G

B



Images in Matlab
• Images represented as a matrix
• Suppose we have a NxM RGB image called “im”

– im(1,1,1) = top-left pixel value in R-channel
– im(y, x, b) = y pixels down, x pixels to right in the bth channel
– im(N, M, 3) = bottom-right pixel in B-channel

• imread(filename) returns a uint8 image (values 0 to 255)
– Convert to double format (values 0 to 1) with im2double
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Color spaces

• How can we represent color?

http://en.wikipedia.org/wiki/File:RGB_illumination.jpg



Color spaces: RGB

0,1,0

0,0,1

1,0,0

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png

Some drawbacks
• Strongly correlated channels

• Non-perceptual 

Default color space

R
(G=0,B=0)

G
(R=0,B=0)

B
(R=0,G=0)



Color spaces: HSV

Intuitive color space

H
(S=1,V=1)

S
(H=1,V=1)

V
(H=1,S=0)



Color spaces: YCbCr

Y
(Cb=0.5,Cr=0.5)

Cb
(Y=0.5,Cr=0.5)

Cr
(Y=0.5,Cb=05)

Y=0 Y=0.5

Y=1
Cb

Cr

Fast to compute, good for 

compression, used by TV



Color spaces: L*a*b*

“Perceptually uniform”* color space

L
(a=0,b=0)

a
(L=65,b=0)

b
(L=65,a=0)



If you had to choose, would you rather go 
without luminance or chrominance?



If you had to choose, would you rather go 
without luminance or chrominance?



Most information in intensity

Only color shown – constant intensity



Most information in intensity

Only intensity shown – constant color



Most information in intensity

Original image



Back to grayscale intensity
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Fields that Use Digital Image Processing
• Examples of gamma-ray imaging



Fields that Use Digital Image Processing

The First X-ray Photo

(1845～1923)
Wilhelm Röntgen

• Examples of X-ray imaging



Digital Image Signals



• Moving images (Video)
▫ Movie: 24 frames/second

▫ TV: 25 frames/second

▫ Gray scale image: fk(m, n)

▫ Color image: 

Rk(m, n), Gk(m, n), Bk(m, n)

Video Signals



• Image Compression

Image Signals and Systems

Compression at 0.5 bit per pixel by means of JPEG and JPEG2000



• Image Transform

Image Signals and Systems

2-D wavelet transform



• Image Transform

Image Signals and Systems



• Image Denosing

Image Signals and Systems

"Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering" 



• Image Denosing

Image Signals and Systems



• Video Denosing

Video Signals and Systems

“Video Denoising by Sparse 3D Transform-Domain Collaborative Filtering" 



Low-level processing

Canny

Middle-level processing
original image edge image

edge image circular arcs and line segments

data
structure

ORT



Middle-level processing

original color image regions of homogeneous color

data
structure

K-means
clustering 

followed by 
connected 
component 

analysis



Low-level to high-level processing

edge image

consistent

line clustershigh-level

middle-level

low-level



• Middle-level & High-level processing

 Image       features/attributes, features       recognition

 Image Analysis, Image Recognition, Image Comprehension

 Pattern Recognition, Computer Vision

 Difficulty

 Computer has no intelligence

 Machine Learning!!

Image Signals and Systems



• Cell Segmentation (2D)

Image Signals and Systems

Original Image Segment Result



• Cell Segmentation (3D)

3D Signals and Systems



• Matching Result (2D)

Image Signal and Systems



Image Signals and Systems

• Matching Result (3D)

Segment Result Matching Result



Image Signals and Systems

• Edge Detection

gx2+gy2 gx2+gy2 > T



Image Signals and Systems

• Color-Based Segmentation



Image Signals and Systems

• Erosion

Original image                        Eroded image



Image Signals and Systems

• Erosion

Eroded once Eroded twice



Vision Signals and Systems

• Vision-based biometrics

The Afghan Girl Identified by Her Iris 
Patterns



Vision Signals and Systems



Vision Signals and Systems



Vision Signals and Systems

• Surveillance and tracking



Vision Signals and Systems



Vision Signals and Systems

• Augmented reality



Vision Signals and Systems

• Content-based retrieval

Online shopping catalog search



Something Cool!!!
• Panoramas

1. Pick one image (red)

2. Warp the other images towards it (usually, one by one)

3. blend



Super-resolution

Something Cool!!!



Something Cool!!!
• Panoramas



• Automatic Mosaic Stitching



Something Cool!!!

• Face warping and morphing







A New Kind of Camera-Lytro System

• The Lytro camera lets you create living pictures 

• that you can endlessly refocus after you take 
them. 

• See the light. All of it.

• Refocus pictures after you take them.

• Move the picture in any direction to change 
your perspective.

http://image.tianjimedia.com/uploadImages/2012/291/835997J92A05_20111022122109761[1].jpg
http://image.tianjimedia.com/uploadImages/2012/291/835997J92A05_20111022122109761[1].jpg


Light-Field Camera — Refocusing 

122

This video shows the refocusing results in different depths



Digital Refocusing on MIN



Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image



Projection can be tricky…
Slide source: Seitz



Projection can be tricky…
Slide source: Seitz



Projective Geometry

What is lost?

• Length

Which is closer?

Who is taller?



3D Applications

Entertainment

Medical care
Office

Cinema



3D Data Capture

CT / MRI scanner Multi-view



3D Capture Technique in Avatar

Shape

Motion

Face

Images from
“Avatar: Creating The World of 
Pandora”



3D Surface Reconstruction

Surface reconstruction
Using Visual-Hull and geometric constraints



Automatic 3D reconstruction from 

internet photo collections

“Statue of Liberty”

3D model

Flickr photos

“Half Dome, Yosemite” “Colosseum, Rome”



Seam Carving

Seam Carving GUI.lnk


Seam Carving



Seam Carving



Seam Carving



Seam Carving



Seam Carving



Seam Carving



Seam Carving

Simple object removal: 
the user marks a region 
for removal (green), and 
possibly a region to 
protect (red), on the 
original image (see inset 
in left image). On the 
right image, consecutive 
vertical seam were 
removed until no ‘green’ 
pixels were left.



Seam Carving

Object removal: In this example, in addition to removing the object (one shoe), the 
image was enlarged back to its original size. Note that this example would be 
difficult to accomplish using in-painting or texture synthesis.

Find the missing shoe!



Liquid Rescale

•Calculate the weight/density/energy of each pixel
•Generate a list of seams



Liquid Rescale

•Calculate the weight/density/energy of each pixel
•Generate a list of seams



Why is vision difficult?

 What do computers see?
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White

1m

Shadow

Car

Horse

Wheel

Person
Sky

Road

The car is in front of the 
pole



Visual Cues
• People use information from various visual cues for 

recognition (e.g., color, shape, texture etc.)
 How important is each visual cue?

 How do we combine information from various visual cues?



Color Cues



Texture Cues



Shape Cues



Grouping Cues
Similarity (color, texture, proximity)



Depth Cues



Shading Cues

Source: J. Koenderink



Frequency Cues

Salvador Dali
“Gala Contemplating the Mediterranean Sea, 
which at 30 meters becomes the portrait 
of Abraham Lincoln”, 1976



• The frequency domain

A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.



Frequency cues in Fourier Transform

Example:
cheetah pic



Frequency cues in Fourier Transform

This is the 
magnitude 
transform 
of the 
cheetah 
pic



Frequency cues in Fourier Transform

This is the 
phase 
transform 
of the 
cheetah 
pic



Example:
zebra pic

Frequency cues in Fourier Transform



Frequency cues in Fourier Transform

This is the 
magnitude 
transform 
of the 
zebra pic



Frequency cues in Fourier Transform

This is the 
phase 
transform 
of the 
zebra pic



Frequency cues in Fourier Transform

Reconstru
ction with 
cheetah 
phase, 
zebra 
magnitude



Frequency cues in Fourier Transform

Reconstru
ction with 
zebra 
phase, 
cheetah 
magnitude

Phase carries location information



Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter

- Accentuates differences with local 

average

Source: D. Lowe



Sharpening

Source: D. Lowe



Other filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel



Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel



Filtering vs. Convolution

• 2d filtering
– h=filter2(g,f); or

h=imfilter(f,g);

• 2d convolution
– h=conv2(g,f);

],[],[],[
,

lnkmflkgnmh
lk



f=imageg=filter

],[],[],[
,

lnkmflkgnmh
lk





Key properties of linear filters

Linearity:
filter(f1 + f2) = filter(f1) + filter(f2)

Shift invariance: same behavior regardless of 
pixel location
filter(shift(f)) = shift(filter(f))

Any linear, shift-invariant operator can be 
represented as a convolution

Source: S. Lazebnik



More properties
• Commutative: a * b = b * a

– Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
– Often apply several filters one after another: (((a * b1) * b2) * b3)

– This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = [0, 0, 1, 0, 0],
a * e = a

Source: S. Lazebnik



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian



Smoothing with Gaussian filter



Smoothing with box filter



Gaussian filters

• Remove “high-frequency” components from the 
image (low-pass filter)

– Images become more smooth

• Convolution with self is another Gaussian

– So can smooth with small-width kernel, repeat, and 
get same result as larger-width kernel would have

– Convolving two times with Gaussian kernel of width σ
is same as convolving once with kernel of width  σ√2 

• Separable kernel

– Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Separability example

*

*

=

=

2D convolution

(center location only)

Source: K. Grauman

The filter factors

into a product of 1D

filters:

Perform convolution

along rows:

Followed by convolution

along the remaining column:



Separability

• Why is separability useful in practice?



Some practical matters



How big should the filter be?
• Values at edges should be near zero

• Rule of thumb for Gaussian: set filter half-width to 
about 3 σ

Practical matters



Practical matters

• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods:

• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. Marschner



Practical matters

– methods (MATLAB):

• clip filter (black): imfilter(f, g, 0)

• wrap around: imfilter(f, g, ‘circular’)

• copy edge: imfilter(f, g, ‘replicate’)

• reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner

Q?



Practical matters

• What is the size of the output?

• MATLAB: filter2(g, f, shape)

– shape = ‘full’: output size is sum of sizes of f and g

– shape = ‘same’: output size is same as f

– shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik



Project 1: Hybrid Images

Gaussian Filter!

Laplacian Filter!

A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

Gaussianunit impulse Laplacian of Gaussian

http://cvcl.mit.edu/hybridimage.htm


Take-home messages

• Image is a matrix of numbers

• Linear filtering is sum of dot 
product at each position

– Can smooth, sharpen, translate 
(among many other uses)

• Be aware of details for filter size, 
extrapolation, cropping

111

111

111

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99

0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91

0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92

0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95

0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85

0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33

0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74

0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93

0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99

0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97

0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

=



Practice questions

1. Write down a 3x3 filter that returns a positive 
value if the average value of the 4-adjacent 
neighbors is less than the center and a 
negative value otherwise

2. Write down a filter that will compute the 
gradient in the x-direction:

gradx(y,x) = im(y,x+1)-im(y,x) for each x, y



Practice questions

3.  Fill in the blanks:
a) _ = D * B 

b) A = _ * _

c) F = D * _

d) _ = D * D

A

B

C

D

E

F

G

H I

Filtering Operator



Learning representations/features
The traditional model of pattern recognition (since the late 50's)
 Fixed/engineered features (or fixed kernel) + trainable classifier

End-to-end learning / Feature learning / Deep learning
 Trainable features (or kernel) + trainable classifier

hand-crafted
Feature Extractor

Trainable
Classifier

Trainable
Feature Extractor

“Simple” Trainable
Classifier



Deep Learning: Learning hierarchical 

representations
It’s deep if it has more than one stage of non-linear feature 
transformation.

Feature visualization 
of convolutional net 
trained on ImageNet
from [Zeiler & 
Fergus 2013]



Why Deep Learning?

 How does the cortex learn perception?



The Mammalian Visual Cortex is Hierarchical

 The ventral (recognition) pathway in the visual cortex 
has multiple stages

 Retina-LGN- V1 - V2 - V4 - PIT - AIT ....

 Lots of intermediate representations



Deep Learning: CNN ILSVRC Architecture



Deep Learning for Object Detection



Top bicycle FPs (AP 62.5%)



Caffe: Open Sourcing Deep Learning

• Convolutional Architecture for Fast Feature Extraction
 Seamless switching between CPU and GPU
 Fast computation (2.5ms / image with GPU)
 Full training and testing capability
 Reference ImageNet model available

• A framework to support multiple applications:

• Main Page
 http://www.berkeleyvision.org/

EmbeddingClassification Detection

http://www.berkeleyvision.org/


Scene Completion

[Hays and Efros. Scene Completion Using Millions of Photographs. 
SIGGRAPH 2007 and CACM October 2008.]



Nearest neighbor scenes from 
database of 2.3 million photos



Graph cut + Poisson blending



Ongoing Research

An Empirical Study of Context in Object Detection



Categories of the SUN database



Computer Vision and Nearby Fields

• Computer Graphics: Models to Images

• Comp. Photography: Images to Images

• Computer Vision: Images to Models



Computer Vision

Make computers understand images and 
video.

What kind of scene?

Where are the cars?

How far is the 

building?

…



Vision is really hard

• Vision is an amazing feat of natural 
intelligence
– Visual cortex occupies about 50% of Macaque brain

– More human brain devoted to vision than anything else

Is that a 
queen or a 

bishop?



Why computer vision matters

Safety Health Security

Comfort AccessFun



Ridiculously brief history of computer vision

• 1966: Minsky assigns computer vision 
as an undergrad summer project

• 1960’s: interpretation of synthetic 
worlds

• 1970’s: some progress on interpreting 
selected images

• 1980’s: ANNs come and go; shift toward 
geometry and increased mathematical 
rigor

• 1990’s: face recognition; statistical 
analysis in vogue

• 2000’s: broader recognition; large 
annotated datasets available; video 
processing starts

Guzman ‘68

Ohta Kanade ‘78

Turk and Pentland ‘91



Optical character recognition (OCR)

Digit recognition, AT&T labs

http://www.research.att.com/~yann/

Technology to convert scanned docs to text
• If you have a scanner, it probably came with OCR software

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

http://www.research.att.com/~yann
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition


Face detection

• Many new digital cameras now detect faces

– Canon, Sony, Fuji, …



Smile detection

Sony Cyber-shot® T70 Digital Still Camera 

http://www.sonystyle.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=10551&storeId=10151&productId=8198552921665200469&langId=-1


3D from thousands of images

Building Rome in a Day: Agarwal et al. 2009



Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics

“A smart camera is flush-mounted in the checkout lane, continuously 

watching for items. When an item is detected and recognized, the 

cashier verifies the quantity of items that were found under the basket, 

and continues to close the transaction. The item can remain under the 

basket, and with LaneHawk,you are assured to get paid for it… “

http://www.evolution.com/products/lanehawk/


Vision-based biometrics

“How the Afghan Girl was Identified by Her Iris Patterns”  Read the story 

wikipedia

http://www.cl.cam.ac.uk/~jgd1000/afghan.html
http://en.wikipedia.org/wiki/Afghan_Girl_(photo)


Login without a password…

Fingerprint scanners on 

many new laptops, 

other devices

Face recognition systems now 

beginning to appear more widely
http://www.sensiblevision.com/

http://www.sensiblevision.com/


Object recognition (in mobile phones)

Point & Find, Nokia

Google Goggles

http://www.infoworld.com/article/07/04/24/HNnokiasiliconvalley_1.html
http://research.nokia.com/researchteams/vcui/index.html
http://www.google.com/mobile/goggles/#text


The Matrix movies, ESC Entertainment, XYZRGB, NRC

Special effects:  shape capture



Pirates of the Carribean, Industrial Light and Magic

Special effects:  motion capture



Sports

Sportvision first down line

Nice explanation on www.howstuffworks.com

http://www.sportvision.com/video.html

http://www.howstuffworks.com/first-down-line.htm
http://www.howstuffworks.com/
http://www.sportvision.com/video.html


Smart cars

• Mobileye

– Vision systems currently in high-end BMW, GM, 
Volvo models 

– By 2010:  70% of car manufacturers.

Slide content courtesy of Amnon Shashua

http://www.mobileye.com/


Google cars

http://www.nytimes.com/2010/10/10/science/10google.html?ref=artificialintelligence

http://www.nytimes.com/2010/10/10/science/10google.html?ref=artificialintelligence


Interactive Games: Kinect

• Object Recognition: 
http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o

• Mario: http://www.youtube.com/watch?v=8CTJL5lUjHg

• 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A

• Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY

http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o
http://www.youtube.com/watch?v=8CTJL5lUjHg
http://www.youtube.com/watch?v=7QrnwoO1-8A
http://www.youtube.com/watch?v=w8BmgtMKFbY


Vision in space

Vision systems (JPL) used for several tasks
• Panorama stitching

• 3D terrain modeling

• Obstacle detection, position tracking

• For more, read “Computer Vision on Mars” by Matthies et al.

NASA'S Mars Exploration Rover Spirit captured this westward view from atop 

a low plateau where Spirit spent the closing months of 2007. 

http://www.ri.cmu.edu/pubs/pub_5719.html
http://marsrovers.jpl.nasa.gov/gallery/images.html


Industrial robots

Vision-guided robots position nut runners on wheels



Mobile robots

http://www.robocup.org/
NASA’s Mars Spirit Rover

http://en.wikipedia.org/wiki/Spirit_rover

Saxena et al. 2008

STAIR at Stanford

UNSW_CMU.mpg
UNSW_CMU.mpg
http://www.robocup.org/
http://upload.wikimedia.org/wikipedia/commons/d/d8/NASA_Mars_Rover.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d8/NASA_Mars_Rover.jpg
http://en.wikipedia.org/wiki/Spirit_rover
http://stair.stanford.edu/


Medical imaging

Image guided surgery

Grimson et al., MIT
3D imaging

MRI, CT

http://groups.csail.mit.edu/vision/medical-vision/surgery/surgical_navigation.html
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• Signals are represented mathematically as functions 
of one or more independent variables

• Described by mathematical expression and 
waveform

(In this book, we focus our attention on signals involving a 
single independent variable as time)

1.1.1 Mathematical Representation of Signals



• Deterministic signal and  Random Signal

• Continuous signal and Discrete Signal

• Energy Signal and Power Signal

• Periodic Signal and Non-periodic Signal

• Odd Signal and Even Signal

• Real Signal and Complex Signal

• ………………..

1.1.2 Classification of Signals



• Deterministic signal
▫ Can be described by exact 

Mathematic expression 

▫ Given t and get Deterministic 
result 

• Random Signal
▫ Can not be described by exact 

Mathematic expression

▫ Given t and get random result 

1.1.2.1 Deterministic signal and  Random Signal



1.1.2.2 Continuous-Time (CT) and Discrete-

Time (DT) Signals:

• Continuous-Time (CT) Signals: x(t)
 Independent variable (t) is continuous

 The signal is defined for a continuum of values of the 
independent variable (t)

: ( ) 2 texample x t e



1.1.2.2 Continuous-Time (CT) and Discrete-

Time (DT) Signals:

• Discrete-Time (DT) Signals/Sequences: x[n]
 Independent variable (n) takes on only a discrete set of values, in 

this course, a set of integer values only

 Signal is defined only at discrete times

2, 1

4, 0
: [ ]

2, 1

0,

n

n
example x n

n

others

 



 






• Instantaneous power 

• Total energy over time

interval [𝑡1, 𝑡2]

• Average power over

time interval [𝑡1, 𝑡2]

1.1.2.3 Time-Limited and Power-Limited Signals
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1.1.2.3 Time-Limited and Power-Limited Signals

Power and energy definitions in the course

• Total Energy
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• Total Energy

𝐸∞ = lim
𝑇→∞

𝑇−׬
𝑇
𝑥(𝑡) 2𝑑𝑡 𝐸∞ = lim

𝑁→∞
σ𝑛=−𝑁
𝑁 𝑥 𝑛 2

• Average Power

𝑃∞ =
1

2𝑇
lim
𝑇→∞

𝑇−׬
𝑇
𝑥(𝑡) 2𝑑𝑡 𝑃∞ = lim

𝑁→∞

1

2𝑁+1
σ𝑛=−𝑁
𝑁 𝑥 𝑛 2

1.1.2.3 Time-Limited and Power-Limited Signals

Power and energy definitions over an infinite interval



• Finite-Energy Signal

𝐸∞ < ∞ 𝑃∞ = 0

• Finite-Average Power Signal

𝑃∞ < ∞ 𝐸∞ =∞

1.1.2.3 Time-Limited and Power-Limited Signals

example:

example:        𝑥 𝑛 =4



For continuous-time signals

• Definition:

If 𝑥 𝑡 = 𝑥 𝑡 + 𝑇 for all values of 𝑡, 𝑥 𝑡 is 
periodic Then 𝑥 𝑡 = 𝑥 𝑡 + 𝑚𝑇 for all 𝑡 and any 
integral 𝑚

 Fundamental Period:  the smallest positive value of            
satisfying 𝑥 𝑡 = 𝑥 𝑡 + 𝑇 for all 𝑡

1.1.2.4 Periodic and Non-Periodic Signals

If  the signal is constant, 

the fundamental period ?



For discrete-time signals

• Definition:

If 𝑥[𝑛] = 𝑥[𝑛 + 𝑁] for all values of 𝑛, 𝑥[𝑛] is 
periodic Then 𝑥[𝑛] = 𝑥[𝑛 +𝑚𝑁] for all 𝑛 and any 
integral 𝑚

 Fundamental Period:  the smallest positive value of            
satisfying 𝑥[𝑛] = 𝑥[𝑛 + 𝑁] for all 𝑛

1.1.2.4 Periodic and Aperiodic Signals

If  the signal is constant, 

the fundamental period ?



• Definition:

𝑥(𝑡) or 𝑥[𝑛] is even if it is identical to its time-
reversed counterpart

Similarly 𝑥(𝑡) or 𝑥[𝑛] is odd if

1.1.2.5 Even and Odd Signals

)()( txtx  ][][ nxnx 

)()( txtx  ][][ nxnx 

For odd signal         , can one determine          ?)(tx )0(x



• Even-odd decomposition of a signal

1.1.2.5 Even and Odd Signals

)}({)}({)( txOtxEtx dv 

Even part Odd part

)]()([
2

1
)}({ txtxtxEV  )]()([

2

1
)}({ txtxtxOd 
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1.2.1 Time Shift

x(t)

t

x(t-t0)

t

)()( 0ttxtx  ][][ 0nnxnx 

e.g.：Radar, Sonar, Radio propagations

Notes: Each point in x(t)/x[n] occurs at a later/early time in x(t-t0)/x[n-n0], 

when t0/n0 is positive/negative, i.e.

• x(t-t0)/x[n-n0] is the delayed version of x(t)/x[n], for t0/n0 >0

• x(t-t0)/x[n-n0] is the advanced version of x(t)/x[n], for t0/n0 <0



1.2.2 Time Reversal

x(t)

t

x(-t)

t

)()( txtx  ][][ nxnx 

e.g.：tape recording played backward



1.2.3 Time Scaling

x(t)

t

x(2t)

t

)()( txtx  ][][ nxnx 

E.g.   tape recording played:

fast forward 

slow forward

slow backward

fast backward

1

1

Notes： —Compression

—Extension

1
10 
01  

1



1.2.4 A General Transform of the Independent 

Variable 

)()(   txtx ][][   nxnx

)23()(  txtx

Rule:

1. time shift first

2. then reflection(time reversal) and time scaling

example :



Question: what 

happens if 

shifting after 

scaling/reflection

x(-3(t+2/3))



Example: x(t)、x(2t)、x(t/2) Example: x[n]、x[2n]
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• Real Exponential Signals: when 𝐶 and 𝛼 are real 
numbers, e.g. 

▫ growing exponential, when

▫ decaying exponential, when

▫ constant 

1.3.1 Continuous-Time Complex Exponentials 

Signals and Sinusoidal Signals

teCtx )(

Where 𝐶 and 𝛼 are complex numbers 

tetx 2)( 

0
0
0



• Periodic Complex Exponential and Sinusoidal Signals: 

when 𝐶is real, 𝛼 is purely imaginary, e.g.                       
then the fundamental period 𝑇0 = 2𝜋/𝜔0 [s] , angular 

frequency 𝜔0[rad/s], and frequency 𝑓0 =
𝜔0

2𝜋
= 1/𝑇0[Hz] 

Unless noted otherwise, in this course, we always call ω0 
frequency

▫ Important periodicity property :
▫ 1) the larger the magnitude of 𝜔0 , the higher the oscillation 

in the signal

▫ 2) the signal 𝑥(𝑡) is periodic for any value of 𝜔0
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• A general representation, when 𝐶 and 𝛼 are complex 
numbers, denoted as                                              , then

is the envelop of the waveform 

is the oscillation frequency

Example of real part of 𝑥(𝑡)

0,CC  jre j  ＝

)()( 00)(
 


tjrttjrj eeceectx

rtec 

0

Damped  sinusoids 0r



• Real Exponential Signals: when 𝐶 and 𝛼 are real 
numbers

▫ e.g. growing function, when 𝛼 > 1

1.3.2 Discrete-Time Complex Exponentials 

Signals and Sinusoidal Signals

Where 𝐶 and 𝛼 are complex numbers 

nCnx ][

nnx 2][ 

n

x[n]



▫ decaying function, when 0 < 𝛼 < 1

▫ constant, when 𝛼 = 1

▫ alternates in set              , when 𝛼 = −1

 nnx 2/1][ 

n

x[n]

 CC,



• Complex Exponential and Sinusoidal Signals: when        

𝐶 is real, 𝛼 is a point on the unit circle, e.g.

or

Its periodicity property? Similar to that of continuous-time 
signals?

• A general representation, when 𝐶 , 𝛼 are complex 
numbers, denoted as                                       ,then 

• is the envelop of the waveform

nj
enx 0][


 )sin(),cos(][ 00   nAnAnx

0,CC
  jj ree ＝

)n(nn 00][
 


jjnj ercerecnx
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• Periodicity Property of Discrete-time Complex    
Exponentials
▫ a) recall the definition of the periodic discrete-time signal  
𝑥 𝑛 = 𝑥 𝑛 + 𝑁 for all 𝑛

▫ b)if it is periodic, there exists a positive integer 𝑁, which 

satisfies 𝑒𝑗𝜔0𝑛 = 𝑒𝑗𝜔0(𝑛+𝑁) = 𝑒𝑗𝜔0𝑛𝑒𝑗𝜔0𝑁so, it requires 

𝑒𝑗𝜔0𝑁 = 1, i.e. 𝜔0𝑁 = 2𝜋𝑚

▫ If there exists an integer satisfying that 2𝜋𝑚/𝜔0 is an 
integer, i.e. 2𝜋/𝜔0 is rational number ,  𝑥 𝑛 is periodic with 
fundamental period of N = 2𝜋𝑚/𝜔0 ,  where 𝑁,𝑚 are 
integers without any factors in common.

otherwise, 𝑥 𝑛 is aperiodic.  

Different from that of continuous exponentials

nj
enx 0][






• Another difference from that of CT exponentials

since                                       for any integer

the signal is fully defined within a frequency interval of 

length       :                                               , for any integer

Distinctive signals for different 𝜔0 within any 2π region, i.e.

for any integer m

Without loss of generalization, for                               ,  the rate 

of oscillation in the signal           increases with         increases

from 0 to 𝜋

Important for discrete-time filter design!                            
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• Comparison of Periodic Properties of CT and DT 
Complex Exponentials/ Sinusoids 

Distinct signals for distinct value 

of 

Identical signals for values of         

separated by multiples of 

Periodic for any choice of Periodic only of                          

for some integers              and             

Fundamental angular frequency Fundamental angular 

frequency            , if m and N do 

not have any factors in common 

Fundamental period Fundamental period
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• Unit Impulse Sequence

• Unit Step Sequence

1.4.1 Discrete-Time Unit Impulse and Unit Step 

Sequences
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• Relationship

• Sampling  Property

• Signal representation by means of a series of delayed 
unit samples
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• Unit Step Function

1.4.2 Continuous-Time Unit Step and Unit 

Impulse Functions
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Can we find counterpart of the unit impulse 
function in CT domain as that in DT domain ?

Does it exist         satisfying the following 
relationship 
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• Unit Impulse Function

▫ Since 𝑢(𝑡) is undefined at 𝑡 = 0, formally  it is not 

differentiable, then define an approximation to the unit 
step 𝑢∆(𝑡) ,which rises from 0 to 1 in a very short 
interval ∆

▫ So

▫ And  
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• Unit Impulse Function

▫ Dirac Definition

▫ We also call such functions as singularity function or 
generalized functions, for more information, please refer to 
mathematic references
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• Relationship

• Sampling  Property

• Scaling Property
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• Example:  to derive the 1st derivative of  x(t) 

)4(2)2(3)1(2)(  tutututx

)4(2)2(3)1(2
)(

 ttt
dt

tdx




• Example: to determine the following signals/values 
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1.5.1 System Modeling

• RLC Circuit

• Mechanism System
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1.5.1 System Modeling

• Observations:

▫ Very different physical systems may be modeled 
mathematically in very similar ways.

▫ Very different physical systems may have very 
similar mathematical descriptions.
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1.5.1 System Modeling

• Typical Systems and their block illustrations

▫ Amplifier

y(t)=cx(t) 

▫ Adder

y(t)=x1(t)+x2(t)

▫ Multiplier

y(t) =x1(t)*x2(t)

▫ Differentiator/Difference

y(t)=dx(t)/dt,    y[n]=x[n]-x[n-1]

▫ Integrator/Accumulator

…



1.5.2 System Analysis

• Memory vs. Memoryless

• Invertibility: Invertible vs. noninvertible 

• Causality: Casual vs. non-Casual

• Linearity: Linear vs. non-Linear

• Time-invariance: Time-invariant vs. Time-
varying

• Stability: Stable vs. non-Stable



1.5.3 System Interconnections
• The concept of system interconnections

▫ To build more complex systems by interconnecting 
simpler subsystems

▫ To modify response of a system

• Signal flow (Block) diagram

Cascade

Parallel

Feedback
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1.6.1 Systems with and without Memory

• Systems with memory: if the current output of the system is 
dependent on future and/or past values of the inputs and/or 
outputs, e.g.:

▫ Capacitor system:

▫ Accumulator system:

• Memoryless systems: if the current output of the system is 
dependent on the input at the same time, e.g. 

▫ Identity system: 
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• Examples: to determine the memory property of 
the following systems:

▫ Amplifier, adder, multiplier

▫ Integrator, accumulator, differentiator, time inverse system, 
time scalar, decimator, interpolator,  …



1.6.2 Invertibility: Inverse vs. non-

inverse systems
• Inverse systems: distinct inputs lead to distinct 

outputs, e.g. 

• Non-inverse systems: distinct inputs may lead to 
the same outputs, e.g. 

• Importance of the concept: encoding for channel 
coding or lossless compress
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1.6.3 Causality

• A system is causal if the output does not anticipate future 
values of the input, i.e., if the output at any time depends 
only on values of the input up to that time

▫ All real-time physical systems are causal, because time only 
moves forward. Effect occurs after cause. (Imagine if you 
own a non-causal system whose output depends on 
tomorrow’s stock price.)

▫ Causality does not apply to spatially varying signals. (We 
can move both left and right, up and down.)

▫ Causality does not apply to systems processing recorded 
signals, e.g. taped sports games vs. live show.



1.6.3 Causality

• Mathematical definition: A system x(t) →y(t) is 
casual if 

when       x1(t) →y1(t)      x2(t) →y2(t) 

and          x1(t) = x2(t)      for all t≤ t0

Then        y1(t) = y2(t)      for all t≤ t0

• If two inputs to a casual system are identical up 
to some point in time t0, the corresponding 
outputs are also equal up to the same time.



• Examples: Considering the causality property of 
the following signals 



1.6.4 Linearity: Linear vs. non-Linear

• Many systems are nonlinear. For example: many circuit 

elements (e.g., diodes), dynamics of aircraft, 
econometric models,…

• But why we investigate linear systems?

▫ Linear models represent accurate representations of 
behavior of many systems (e.g., linear resistors, 
capacitors, other examples given previously,…)

▫ Can often linearize models to examine “small signal” 
perturbations around “operating points”

▫ Linear systems are analytically tractable, providing 
basis for important tools and considerable insight



• Mathematical definition: A system x(t) →y(t) is linear if 
it has the following additivity property and scaling 
property （可加性和齐次性）

If   x1(t) →y1(t)    and     x2(t) →y2(t)

Additivity property:  x1(t) + x2(t)  → y1(t) + y2(t)

Scaling property:     ax1(t)    → ay1(t) 

• Equivalent sufficient and necessary condition:  superposition 
property:

If           x1(t) →y1(t)    and     x2(t) →y2(t)

then      ax1(t) + bx2(t)   → ay1(t) + by2(t)

• Examples, considering the  linearity and causality properties of the 
following signals：

y[n] = x2[n]        Nonlinear,  Causal

y(t) = x(2t)          Linear, Non-causal



1.6.5 Time-invariance (TI): 

• Informal definition: a system is time-invariant (TI) if its 
behavior does not depend on what time it is.

• Mathematical definition:

▫ For a DT system: A system x[n] → y[n] is TI if for any 
input x[n] and any time shift n0, 

If                       x[n] →y[n]

then            x[n -n0] →y[n -n0]

▫ Similarly for a CT time-invariant system, 

If                       x(t) →y(t)

then             x(t –t0) →y(t –t0) 



• Examples: 

Considering the time-variance property of 
the following systems:

▫ 1. y[n]=nx[n]            Time-varying system

▫ 2. y(t)=x2(t+1)         Time-invariant system



Consider the periodic property of the output of a 
Time-invariant system with the input signal of 
period T

▫ Suppose          x(t + T) = x(t) 

and                   x(t) → y(t)

Then by TI： x(t + T) →y(t + T). 

▫ 3. y(t)=cos(x(t))                     Time-invariant system

▫ 4. Amplitude modulator: 

y(t)=x(t)cosωt                     Time-varying system



Linear Time-Invariant (LTI) Systems

• By exploiting the superposition property and time –invariant 
property, if we know the response of an LTI system to some inputs, 
we actually know the response to many inputs

• If we can find sets of “basic” signals so that

▫ a) We can represent rich classes of signals as linear combinations of 
these building block signals.

▫ b) The response of LTI Systems to these basic signals are both simple 
and insightful.

• So in this course we will study some powerful analysis tools 
associated with LTI systems



Stability

• If a system satisfies that the input to the system 
is bounded, i.e. with finite magnitude, the output 
is also bounded (BIBO) 

• Examples:

when                ,  determine whether or not the

following systems are stable?

Unstable

Stable
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• Homework
 BASIC PROBLEMS WITH ANSWER: 1.10, 1.11, 1.17, 

1.18

 BASIC PROBLEMS: 1.21, 1.22, 1.25, 1.26, 1.27



Many Thanks 

Q & A
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